

Looking further:
Interactive web applications

with Shiny

STA 199 - Dr. Çetinkaya-Rundel
2022-12-08

http://bit.ly/intro-to-shiny-webinar

Announcements

‣ Projects due tonight at 11:59 pm

‣ HW 6 due tomorrow (Friday) at 11:59 pm

‣ Team peer evaluations due Sunday at 11:59 pm

‣ Exam retake (optional) due Thursday, December 15 at 5 pm — no late work
will be accepted

Outline

‣ High level view

‣ Anatomy of a Shiny app

‣ Reactivity 101

‣ File structure

https://gallery.shinyapps.io/120-goog-index/

http://bit.ly/intro-to-shiny-webinar
https://gallery.shinyapps.io/120-goog-index/

 Shiny from

High level view

Every Shiny app has a webpage that the user visits,
and behind this webpage there is a computer

that serves this webpage by running R.

http://bit.ly/intro-to-shiny-webinar

When running your app locally,
the computer serving your app is your computer.

http://bit.ly/intro-to-shiny-webinar

When your app is deployed,
the computer serving your app is a web server.

http://bit.ly/intro-to-shiny-webinar

User interface

HTML

Server instructions

http://bit.ly/intro-to-shiny-webinar

goog-index/app.R

Interactive viz

 Shiny from

Anatomy of a Shiny app

What’s in a Shiny app?

library(shiny)

ui <- fluidPage()

server <- function(input, output) {}

shinyApp(ui = ui, server = server)

User interface
controls the layout and

appearance of app

Server function
contains instructions
needed to build app

Let’s build a simple movie browser app!

data/movies.Rdata
Data from IMDB and Rotten Tomatoes on random
sample of 651 movies released in the US between
1970 and 2014

http://bit.ly/intro-to-shiny-webinar

http://bit.ly/intro-to-shiny-webinar

App template

library(shiny)
library(tidyverse)
load("data/movies.Rdata")
ui <- fluidPage()

server <- function(input, output) {}

shinyApp(ui = ui, server = server)

Dataset used for this app

 Shiny from

Anatomy of a Shiny app

User interface

Define UI

ui <- fluidPage(

 # Sidebar layout with a input and output definitions

 sidebarLayout(

 # Inputs: Select variables to plot

 sidebarPanel(

 # Select variable for y-axis

 selectInput(inputId = "y", label = "Y-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "audience_score"),

 # Select variable for x-axis

 selectInput(inputId = "x", label = "X-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "critics_score")

),

 # Output: Show scatterplot

 mainPanel(

 plotOutput(outputId = "scatterplot")

)

)

http://bit.ly/intro-to-shiny-webinar

Define UI

ui <- fluidPage(

 # Sidebar layout with a input and output definitions

 sidebarLayout(

 # Inputs: Select variables to plot

 sidebarPanel(

 # Select variable for y-axis

 selectInput(inputId = "y", label = "Y-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "audience_score"),

 # Select variable for x-axis

 selectInput(inputId = "x", label = "X-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "critics_score")

),

 # Output: Show scatterplot

 mainPanel(

 plotOutput(outputId = "scatterplot")

)

)

Create fluid page layout

http://bit.ly/intro-to-shiny-webinar

Define UI

ui <- fluidPage(

 # Sidebar layout with a input and output definitions

 sidebarLayout(

 # Inputs: Select variables to plot

 sidebarPanel(

 # Select variable for y-axis

 selectInput(inputId = "y", label = "Y-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "audience_score"),

 # Select variable for x-axis

 selectInput(inputId = "x", label = "X-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "critics_score")

),

 # Output: Show scatterplot

 mainPanel(

 plotOutput(outputId = "scatterplot")

)

)

Create a layout with a
sidebar and main area

http://bit.ly/intro-to-shiny-webinar

Define UI

ui <- fluidPage(

 # Sidebar layout with a input and output definitions

 sidebarLayout(

 # Inputs: Select variables to plot

 sidebarPanel(

 # Select variable for y-axis

 selectInput(inputId = "y", label = "Y-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "audience_score"),

 # Select variable for x-axis

 selectInput(inputId = "x", label = "X-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "critics_score")

),

 # Output: Show scatterplot

 mainPanel(

 plotOutput(outputId = "scatterplot")

)

)

Create a sidebar panel
containing input controls that

can in turn be passed to

http://bit.ly/intro-to-shiny-webinar

Define UI

ui <- fluidPage(

 # Sidebar layout with a input and output definitions

 sidebarLayout(

 # Inputs: Select variables to plot

 sidebarPanel(

 # Select variable for y-axis

 selectInput(inputId = "y", label = "Y-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "audience_score"),

 # Select variable for x-axis

 selectInput(inputId = "x", label = "X-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "critics_score")

),

 # Output: Show scatterplot

 mainPanel(

 plotOutput(outputId = "scatterplot")

)

)

http://bit.ly/intro-to-shiny-webinar

Define UI

ui <- fluidPage(

 # Sidebar layout with a input and output definitions

 sidebarLayout(

 # Inputs: Select variables to plot

 sidebarPanel(

 # Select variable for y-axis

 selectInput(inputId = "y", label = "Y-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "audience_score"),

 # Select variable for x-axis

 selectInput(inputId = "x", label = "X-axis:",

 choices = c("imdb_rating", "imdb_num_votes", "critics_score", "audience_score", "runtime"),

 selected = "critics_score")

),

 # Output: Show scatterplot

 mainPanel(

 plotOutput(outputId = "scatterplot")

)

)

Create a main panel containing
output elements that get created
in the server function can in turn
be passed to sidebarLayout

http://bit.ly/intro-to-shiny-webinar

 Shiny from

Anatomy of a Shiny app

Server

Define server function

server <- function(input, output) {

 # Create the scatterplot object the plotOutput function is expecting

 output$scatterplot <- renderPlot({

 ggplot(data = movies, aes_string(x = input$x, y = input$y)) +

 geom_point()

 })

}

http://bit.ly/intro-to-shiny-webinar

Define server function

server <- function(input, output) {

 # Create the scatterplot object the plotOutput function is expecting

 output$scatterplot <- renderPlot({

 ggplot(data = movies, aes_string(x = input$x, y = input$y)) +

 geom_point()

 })

}

Contains instructions
needed to build app

http://bit.ly/intro-to-shiny-webinar

Define server function

server <- function(input, output) {

 # Create the scatterplot object the plotOutput function is expecting

 output$scatterplot <- renderPlot({

 ggplot(data = movies, aes_string(x = input$x, y = input$y)) +

 geom_point()

 })

}

Renders a reactive plot that
is suitable for assigning to an

output slot

http://bit.ly/intro-to-shiny-webinar

Define server function

server <- function(input, output) {

 # Create the scatterplot object the plotOutput function is expecting

 output$scatterplot <- renderPlot({

 ggplot(data = movies, aes_string(x = input$x, y = input$y)) +

 geom_point()

 })

}
Good ol’ ggplot2 code,

with inputs from UI

http://bit.ly/intro-to-shiny-webinar

 Shiny from

Anatomy of a Shiny app

UI + Server

Create the Shiny app object

shinyApp(ui = ui, server = server)

http://bit.ly/intro-to-shiny-webinar

movies/movies-01.R

Putting it all together…

Add a sliderInput for
alpha level of points on plot

movies/movies-02.R

Inputs

www.rstudio.com/resources/cheatsheets/

https://www.rstudio.com/resources/cheatsheets/

movies/movies-03.R

Add a new widget
to color the points by another variable

Display data frame
if box is checked

movies/movies-04.R

Outputs

 Shiny from

Reactivity 101

Reactions

The input$ list stores the current value of each input object under its name.

Set alpha level

sliderInput(inputId = "alpha",

 label = "Alpha:",

 min = 0, max = 1,

 value = 0.5)

input$alpha

input$alpha = 0.2

input$alpha = 0.5

input$alpha = 0.8

Reactions (cont.)

Reactivity automatically occurs
when an input value is used to render an output object.

Define server function required to create the scatterplot

server <- function(input, output) {

Create the scatterplot object the plotOutput function is expecting

 output$scatterplot <- renderPlot(

 ggplot(data = movies, aes_string(x = input$x, y = input$y,

 color = input$z)) +

geom_point(alpha = input$alpha)

)

}

Suppose you want the option to plot only
certain types of movies as well as report how

many such movies are plotted:

1. Add a UI element for the user to select which type(s)
of movies they want to plot

2. Filter for chosen title type and save as a new
(reactive) expression

3. Use new data frame (which is reactive) for plotting
4. Use new data frame (which is reactive) also for

reporting number of observations

Select which types of movies to plot

checkboxGroupInput(inputId = "selected_type",

 label = "Select movie type(s):",

 choices = c("Documentary", "Feature Film",

 "TV Movie"),

 selected = "Feature Film")

1. Add a UI element for the user to select which type(s) of movies
they want to plot

2. Filter for chosen title type and save the new data frame as a
reactive expression

Create a subset of data filtering for chosen title types

movies_subset <- reactive({

 req(input$selected_type)

 filter(movies, title_type %in% input$selected_type)

})

server:
Creates a cached

expression that knows it
is out of date when input

changes

3. Use new data frame (which is reactive) for plotting

Create scatterplot object plotOutput function is expecting

output$scatterplot <- renderPlot({

 ggplot(data = movies_subset(),

 aes_string(x = input$x, y = input$y, color = input$z)) +

 geom_point(…) +

 …

})

Cached - only re-
run when inputs

change

4. Use new data frame (which is reactive) also for printing number
of observations

mainPanel(

 …

 # Print number of obs plotted

 uiOutput(outputId = "n"),

 …

)

Print number of movies plotted
output$n <- renderUI({
 types <- movies_subset()$title_type %>%
 factor(levels = input$selected_type)
 counts <- table(types)

 HTML(paste("There are",
 counts,
 input$selected_type,
 "movies in this dataset.

"))
})

server:ui:

movies/movies-05.R

Putting it all together…

5. req()

6. App title

7. selectInput() choice labels

8. Formatting of x and y axis labels

9. Visual separation with horizontal lines and breaks

When to use reactive

‣ By using a reactive expression for the subsetted data frame, we were able
to get away with subsetting once and then using the result twice.

‣ In general, reactive conductors let you

‣ not repeat yourself (i.e. avoid copy-and-paste code, which is a
maintenance boon), and

‣ decompose large, complex (code-wise, not necessarily CPU-wise)
calculations into smaller pieces to make them more understandable.

‣ These benefits are similar to what happens when you decompose a large
complex R script into a series of small functions that build on each other.

 Shiny from

File structure

File structure

‣ One directory with every file the app needs:

‣ app.R (your script which ends with a call to shinyApp())

‣ datasets, images, css, helper scripts, etc.

app.R

